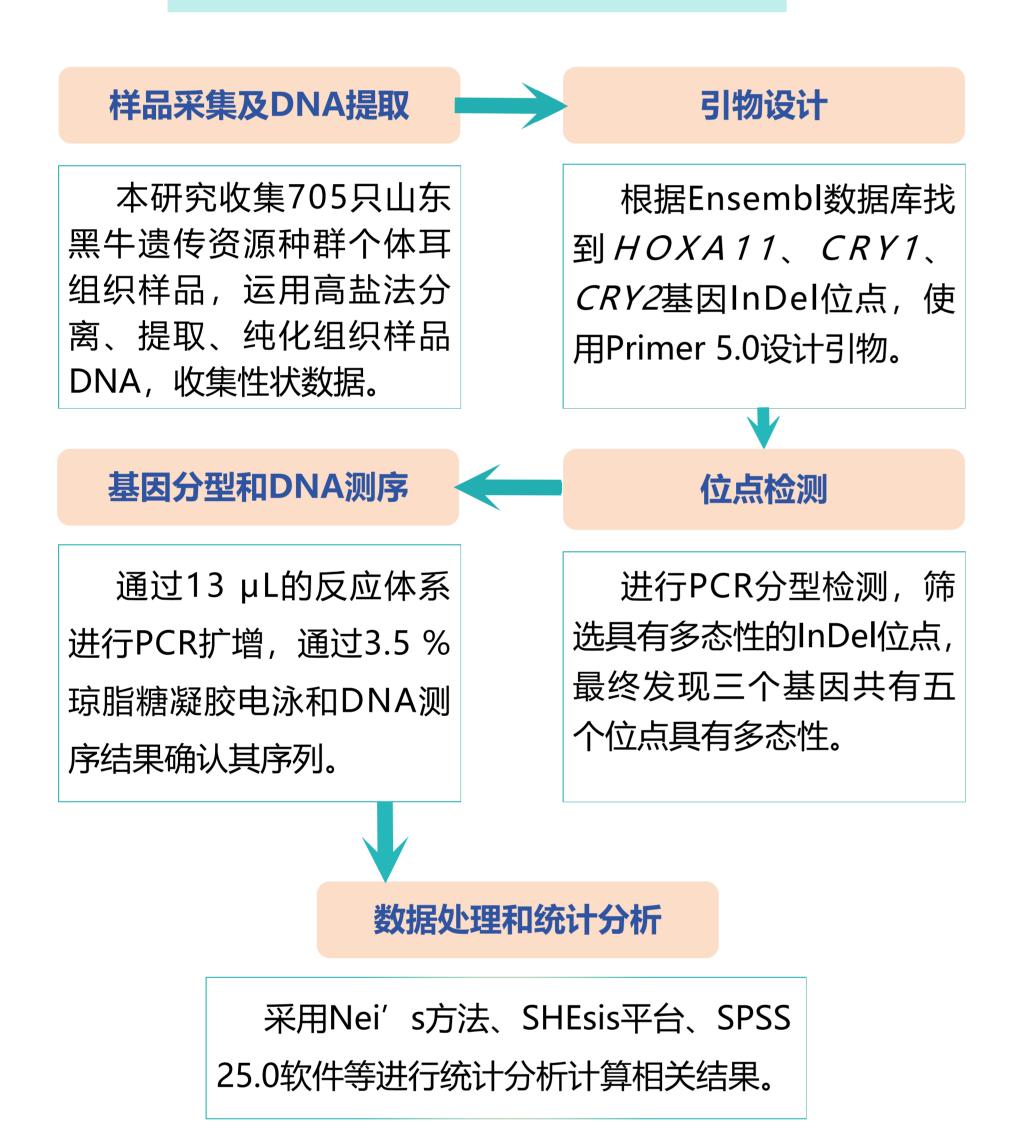


Excavation of variation of three fat deposit-related genes and their association with beef quality traits

三个脂肪沉积相关基因变异挖掘及其与牛肉质性状关联研究

项目成员: 张珂菁、竺蕾静、王志颖、吕润语 指导老师: 蓝贤勇 教授 (动物科技学院)


研究背景与意义

牛肉质性状与脂肪沉积密切相关,直接影响肉牛生产效益。但目前, 我国肉牛育种相对滞后且优质品种匮乏,应加大肉牛的育种改良。分子 标记鉴定是加速分子育种的有力手段之一,其中InDel标记其准确性高、 稳定性好、且检测简便,更易在牛肉质性状的生产实践中推广应用。

CRY1/CRY2 基因均为生物钟基因,参与昼夜节律,与免疫系统和物质代谢密切相关,其转录可以影响细胞周期基因的表达,进而影响成骨、能量代谢、细胞增殖,也可以调节骨骼肌的生理功能。此外,时钟基因的破坏可导致血脂异常和肥胖。HOXA11 基因则在皮下和内脏脂肪中高表达,同时调控牛肢体骨骼发育和肌肉生长,进而导致肌肉重量的改变。

本研究选取HOXA11、CRY1、CRY2基因进行InDel位点挖掘并与牛脂肪沉积性状关联分析,并在获得显著关联结果基础上继续对其中之一的HOXA11基因在不同组织和细胞上的mRNA表达水平进行了进一步的检测,以期阐明重要候选基因对脂肪沉积的影响,为肉牛育种改良提供有效的分子标记和实践参考。

材料与方法

实验结果

确定目标基因

采用文献计量学分析及GWAS方法确定脂肪沉积相关基因:

CRY1、CRY2、HOXA11为目标基因。

分析三个基因与肉质性状关系

1 CRY1基因

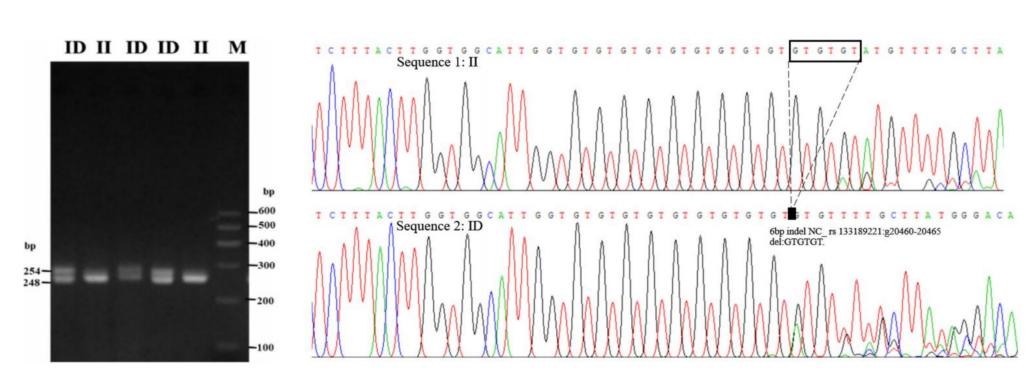


图1 CRY1基因上6-bp缺失鉴定结果

表1	SDBCGR群	体中	CRY1	基因的群份	体遗传参	
# [7	d der de	ないはせ回	مات حاد		70 LL 4+ M/L	-

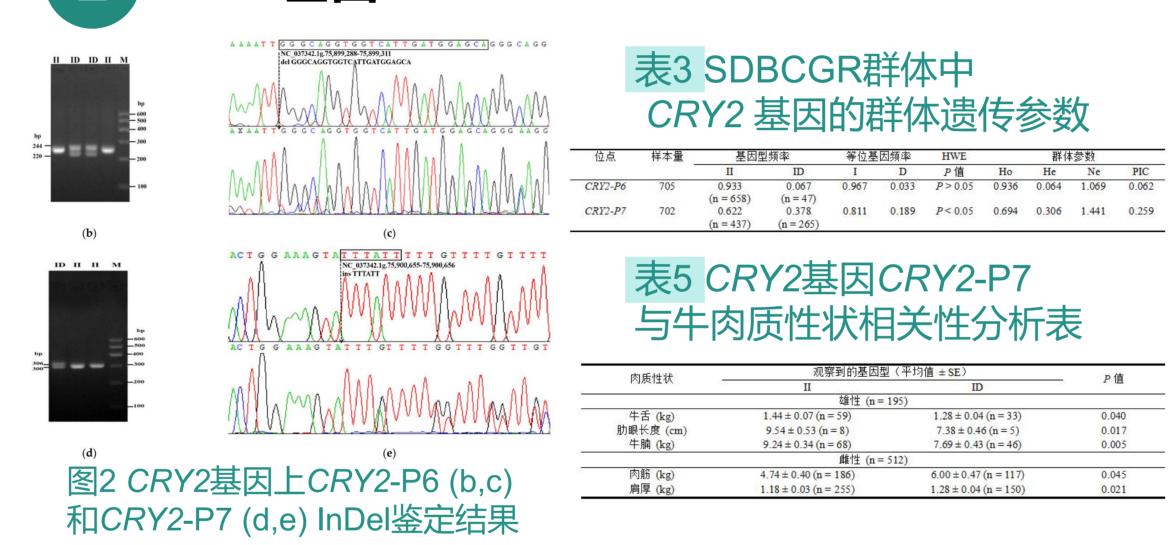

基因	基因型频率 等位基		因频率	HWE	群体参数		Į .	
II	ID	I	D	P值	Но	He	Ne	PIC
0.751 (n = 325)	0.249 (n = 108)	0.876	0.124	P < 0.05	0.782	0.218	1.280	0.195

表2 CRY1基因6-bp缺失与牛肉质性状相关性分析表

性别	肉质性状 -	观察到的基因型	n 佶	
		II	ID	P 值
	腹肉 (kg)	$4.27 \pm 0.09 $ (n = 41)	$3.95 \pm 0.11 (n = 16)$	0.042
	拐杖骨 (kg)	$2.19 \pm 0.13 (n = 41)$	$4.27 \pm 0.09 (n = 15)$	0.042
	毛重 (kg)	$678.78 \pm 5.69 (n = 237)$	$656.49 \pm 9.76 (n = 74)$	0.006
雄性	屠宰重量 (kg)	$328.83 \pm 3.20 (n = 206)$	$301.25 \pm 6.68 (n = 67)$	6.20×10^{-5}
2000	左肢重量 (kg)	$209.90 \pm 2.12 (n = 206)$	$197.44 \pm 5.16 $ (n = 67)	0.028
(n = 121)	右肢重量 (kg)	$210.41 \pm 2.19 (n = 206)$	$196.85 \pm 5.18 (n = 67)$	0.018
	腹肉 (kg)	$3.70 \pm 0.05 $ (n = 205)	$3.37 \pm 0.10 (n = 67)$	0.003
	膈肌 (kg)	$1.96 \pm 0.05 $ (n = 206)	$1.74 \pm 0.05 $ (n = 66)	0.016
	后展芯 (kg)	$1.59 \pm 0.02 $ (n = 202)	$1.45 \pm 0.05 $ (n = 66)	0.002
	钱筋 (kg)	$1.22 \pm 0.02 $ (n = 206)	$1.13 \pm 0.03 (n = 67)$	0.013
	肋眼 (kg)	$2.78 \pm 0.028 (n = 206)$	$2.62 \pm 0.06 (n = 67)$	0.024
	牛肩峰 (kg)	$1.96 \pm 0.048 $ (n = 192)	$1.96 \pm 0.05 (n = 61)$	0.006
	牛肩芯 (kg)	$1.15 \pm 0.029 $ (n = 202)	$1.00 \pm 0.04 (n = 66)$	0.041
	嫩牛排 (kg)	$5.35 \pm 0.061 $ (n = 205)	$4.98 \pm 0.14 (n = 67)$	0.019
雌性	牛腩膜 (kg)	$2.82 \pm 0.04 (n = 205)$	$2.62 \pm 0.08 (n = 67)$	0.016
(n = 312)	牛腩 (kg)	$7.88 \pm 0.13 (n = 206)$	$7.27 \pm 0.27 (n = 65)$	0.029
	里脊肉 (kg)	$10.28 \pm 0.56 (n = 80)$	$12.88 \pm 1.06 (n = 23)$	0.036
	三角牛排 (kg)	$4.55 \pm 0.058 $ (n = 206)	$4.31 \pm 0.12 $ (n = 66)	0.046
	上三筋 (kg)	$1.28 \pm 0.018 $ (n = 206)	$1.19 \pm 0.035 $ (n = 67)	0.025
	牛里脊 (kg)	$2.43 \pm 0.038 $ (n = 202)	$2.24 \pm 0.065 $ (n = 65)	0.013
	枕肉 (kg)	$5.07 \pm 0.095 $ (n = 204)	$4.65 \pm 0.15 $ (n = 67)	0.023

- ② CRY1 基因存在4个InDel位点,其中 rs133189221 位点具有多态性,是位于内含子1上的 6-bp 的缺失;仅存在II和ID两种分型;呈低度遗传多态性。
- ② 在山东黑牛遗传资源 (SDBCGR) 群体 (n=433) 中发现该位点的 缺失突变与肉牛的腹肉重、屠宰重量、牛肩峰重等20个肉质性 状显著相关。在多数胴体性状中,II基因型表型明显优于ID基因型。

2 CRY2基因

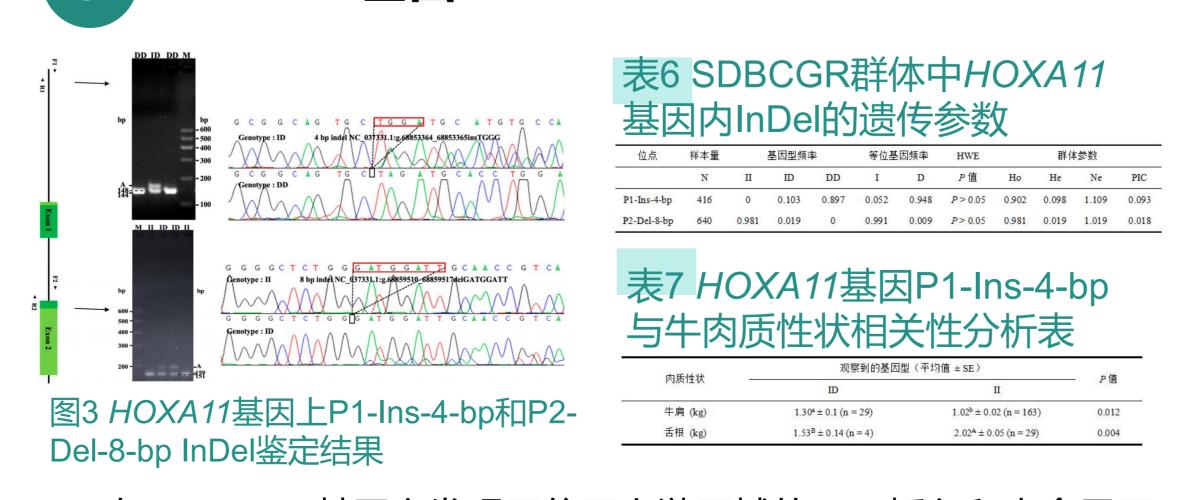


表4 CRY2基因CRY2-P6与牛肉质性状相关性分析表

内氏肿性	观察到的基因型	n 信		
肉质性状	II	ID	- <i>P</i> 值	
	雄性 (n = 1	95)		
毛重 (kg)	$765.36 \pm 7.93 (n = 181)$	$669.73 \pm 24.90 (n = 11)$	0.004	
背部肌腱 (kg)	$0.85 \pm 0.02 (n = 91)$	$0.72 \pm 0.05 (n = 6)$	0.041	
牛嫩肩 (kg)	$3.60 \pm 0.07 (n = 91)$	$2.71 \pm 0.21 (n = 6)$	0.002	
右肢重量 (kg)	$230.41 \pm 3.14 (n = 91)$	$201.00 \pm 15.02 (n = 5)$	0.036	
钱筋 (kg)	$1.49 \pm 0.03 (n = 91)$	$1.15 \pm 0.13 (n = 6)$	0.002	
牛腩排 (kg)	$7.69 \pm 0.13 (n = 90)$	$6.13 \pm 0.48 (n = 6)$	0.004	
三角侧翼 (kg)	$7.13 \pm 0.13 (n = 106)$	$6.08 \pm 0.35 (n = 9)$	0.020	
肋眼 (kg)	$12.39 \pm 0.19 $ (n = 105)	$11.09 \pm 0.32 (n = 10)$	0.044	
高肋 (kg)	$18.72 \pm 0.48 (n = 106)$	$13.25 \pm 1.56 (n = 10)$	0.001	
牛里脊 (kg)	$6.10 \pm 0.09 (n = 103)$	$5.69 \pm 0.12 (n = 10)$	0.012	
30.30	雌性 (n = 5	12)		
牛嫩肩 (kg)	$3.01 \pm 0.03 (n = 376)$	$2.79 \pm 0.11 (n = 33)$	0.034	
厚侧腹 (kg)	$11.41 \pm 0.12 $ (n = 376)	$10.38 \pm 0.38 (n = 33)$	0.017	
右肢重量 (kg)	$209.08 \pm 1.75 (n = 377)$	$196.60 \pm 5.38 (n = 33)$	0.042	
去骨短排骨 (kg)	$1.24 \pm 0.02 (n = 372)$	$1.10 \pm 0.06 (n = 32)$	0.033	

- ① 在 *CRY2* 基因上发现了位于内含子区域的24-bp缺失 (*CRY2*-P6) 和6-bp插入 (*CRY2*-P7)。 *CRY2*-P7 有中度遗传多态性,CRY2-P6 则遗传多态性较低。
- ② 在 SDBCGR 群体 (n=705) 中发现两个多态性位点与毛重、钱筋重、里脊重、牛腩重等近20个肉质性状显著相关, **纯合型个体表现优异。**

3 HOXA11基因

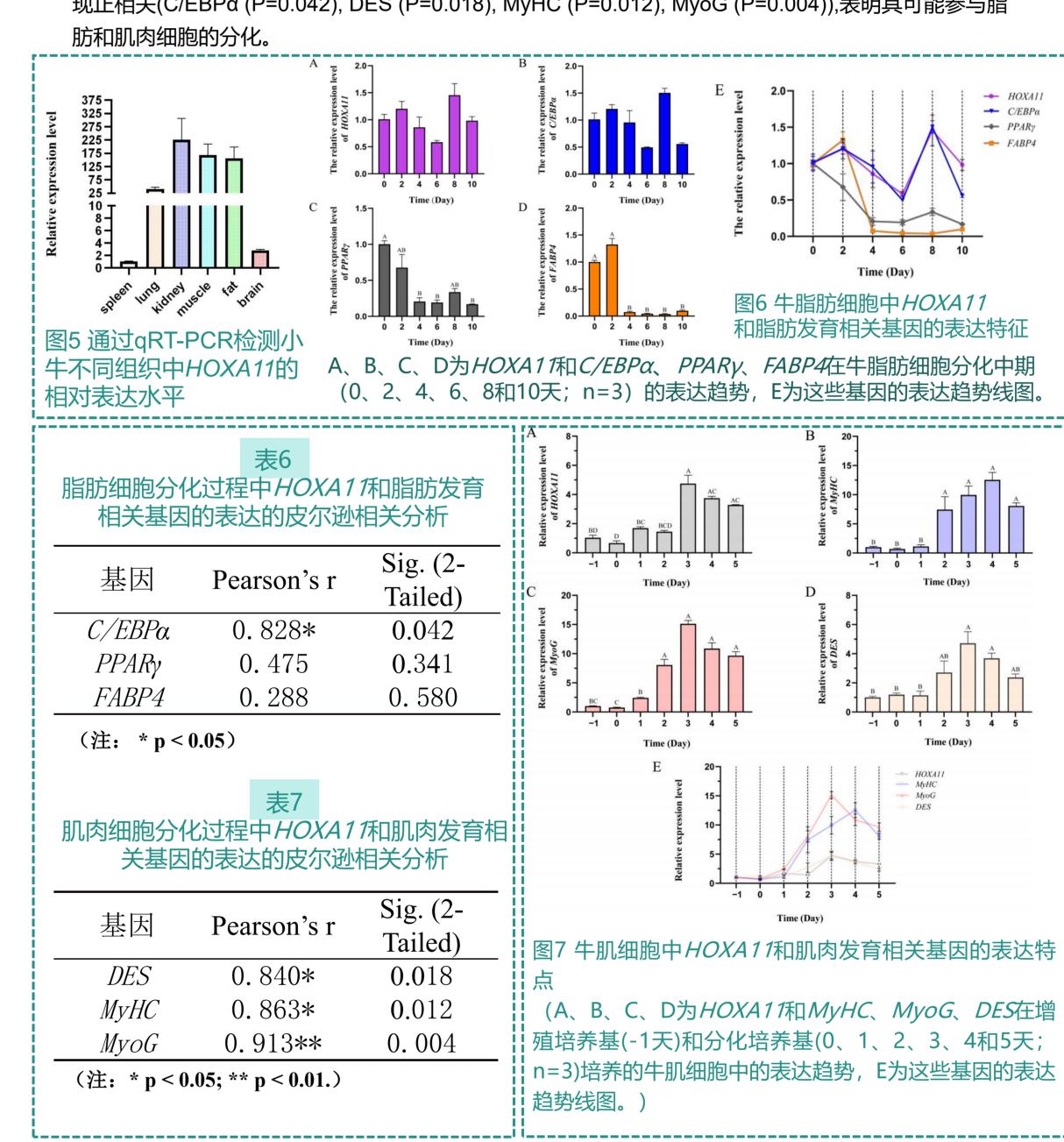

- ① 在 *HOXA11* 基因上发现了位于上游区域的4-bp插入和内含子区域的8-bp的缺失; **两个突变均具有低多态性。**
- ② 在 SDBCGR 群体 (n=640) 中发现 HOXA11 两个缺失突变位点与牛肩重、舌根重、背部肌腱重等11个肉质性状显著相关,且多数性状纯合型个体表现优异。

表8 HOXA11基因P2-Del-8-bp与牛肉质性状相关性分析表

肉质性状 -	观察到的基因型	2.传	
图质注4、 -	ID	п	- P值
	雌性		
背部肌腱 (kg)	$0.55^{B} \pm 0.06 (n = 6)$	$0.71^{A} \pm 0.01 (n = 363)$	0.008
金钱腱 (kg)	$1.06^{B} \pm 0.02 (n = 6)$	$1.21^{A} \pm 0.01 (n = 366)$	2.84×10^{-4}
后侧腹 (kg)	$9.47^{\circ} \pm 0.53 \ (n = 6)$	$11.37^8 \pm 0.11 (n = 363)$	0.034
牛腿肉 (kg)	$14.17^{B} \pm 0.17 (n = 6)$	$15.92^{A} \pm 0.28 (n = 323)$	9.09×10^{-7}
三角形厚翼 (kg)	$2.09^{b} \pm 0.1 (n = 6)$	$2.53^{a} \pm 0.03 (n = 367)$	0.040
三角形侧翼 (kg)	$3.79^{B} \pm 0.08 (n = 6)$	$4.78^{A} \pm 0.05 (n = 367)$	1.00×10^{-6}
 	$3.90^{b} \pm 0.15 (n = 6)$	$4.73^8 \pm 0.04 (n = 365)$	0.018
小里脊肉 (kg)	$2.00^{b} \pm 0.18 (n = 6)$	$2.43^{a} \pm 0.03 $ (n = 358)	0.043
	雄性		
牛腩脂肪 (kg)	$4.48^{a} \pm 0.96 (n = 4)$	$3.36^{b} \pm 0.11 (n = 82)$	0.045

HOXA11基因表达分析

发现*HOXA11*基因在肌肉和脂肪组织中高表达,提示它可能参与了肌肉和脂肪发育的调控。进一步检测了*HOXA11*基因在不同分化时期的脂肪细胞和成肌细胞中的表达,发现其与相关的标志基因表达呈现正相关(C/EBPα (P=0.042), DES (P=0.018), MyHC (P=0.012), MyoG (P=0.004)),表明其可能参与脂肪和肌肉细胞的分化。

实验结论

- ② CRY1、CRY2、HOXA11 基因中的5个 InDel 位点与肉牛屠宰重量、腹肉重、里脊重、牛腩重等肉质性状显著相关 (P<0.05或 P<0.01)。
- ② HOXA11 基因在肌肉和脂肪组织中高表达,同时,HOXA11 基因的表达特征与 C/EBPα (P=0.042)、DES (P=0.018)、MyHC (P=0.012) 和 MyoG (P=0.004) 的表达呈显著正相关。这些结果表明, HOXA11 可能参与牛成肌细胞和脂肪细胞的发育。

获得成就

①第八届全国大学生生命科学竞赛创新创业类国家级二等奖;

②以上成果以本项目负责人为第一作者发表在SCI期刊Animal Biotechnology (JCR2区/IF=3.7)、并列第一作者发表在SCI期刊Cells (中科院大类二区/IF=6.0)、第三作者发表在SCI期刊Animals (中科院大类二区/IF=3.0)。

③感谢大学生创新创业训练项目(202210712103)资助。

联系邮箱: zkj679@126.com (张珂菁)